Published in

American Institute of Physics, Applied Physics Letters, 1(125), 2024

DOI: 10.1063/5.0213131

Links

Tools

Export citation

Search in Google Scholar

Prospects of silicide contacts for silicon quantum electronic devices

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Metal contacts in semiconductor quantum electronic devices can offer advantages over doped contacts, primarily due to their reduced fabrication complexity and lower temperature requirements during processing. Some metals can also facilitate ambipolar device operation or form superconducting contacts. Furthermore, a sharp metal–semiconductor interface allows for contact placement in close proximity to the active device area avoiding damage caused by dopant implantation. However, in the case of gate-defined quantum dots in intrinsic silicon, the formation of a Schottky barrier at the silicon–metal interface can lead to large, nonlinear contact resistances at cryogenic temperatures. We investigate this issue by examining hole transport through metal oxide-semiconductor transistors with platinum silicide contacts on intrinsic silicon substrates. We extract the contact and channel resistances as a function of temperature and improve the cryogenic conductance of the device by more than an order of magnitude by implementing meander-shaped contacts. In addition, we observe signatures of enhanced transport through localized defect states, which we attribute to platinum clusters in the depletion region of the Schottky contacts that form during the silicidation process. These results showcase the prospects of silicide contacts in the context of cryogenic quantum devices and address associated challenges.