Springer Verlag, Journal of Analysis and Testing, 4(7), p. 392-404, 2023
DOI: 10.1007/s41664-023-00274-y
Full text: Unavailable
AbstractFourier transform infrared spectroscopy (FTIR) is one of the most widely used vibrational diagnostic techniques to investigate gas-phase reactive oxygen and nitrogen species (RONS). However, the technique carries intrinsic challenges, particularly in relation to interfering peaks in the spectral data. This study explores the interfacial processes that occur when reactive oxygen and nitrogen species generated by a non-equilibrium air plasma interact with the metal halide windows of an FTIR gas cell, leading to the appearance and evolution of spurious absorption peaks which complicate spectral interpretation. Raman spectroscopy, X-ray photoelectron spectroscopy, time of flight secondary ion mass spectrometry and attenuated total reflectance-FTIR spectroscopy were used to elucidate the origin of spurious absorption peaks spanning the 1400–1300 cm−1 spectral range as a result of KBr exposure to plasma generated species. It was found that plasma exposed KBr contained a lower atomic fraction of Br which was replaced by the NO3 nitrate group, the main absorbance peak of which progressively evolved with plasma exposure and affected the window transparency over the corresponding FTIR region. A correlation was revealed between KNO3 formation, plasma power and exposure time to a growth and change in molecular vibrational energies corresponding to asymmetric NO3 stretching vibrations in the KNO3 structure.