Published in

MDPI, Sustainability, 8(16), p. 3103, 2024

DOI: 10.3390/su16083103

Links

Tools

Export citation

Search in Google Scholar

A Sustainable W-RLG Model for Attack Detection in Healthcare IoT Systems

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The increasingly widespread use of IoT devices in healthcare systems has heightened the need for sustainable and efficient cybersecurity measures. In this paper, we introduce the W-RLG Model, a novel deep learning approach that combines Whale Optimization with Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU) for attack detection in healthcare IoT systems. Leveraging the strengths of these algorithms, the W-RLG Model identifies potential cyber threats with remarkable accuracy, protecting the integrity and privacy of sensitive health data. This model’s precision, recall, and F1-score are unparalleled, being significantly better than those achieved using traditional machine learning methods, and its sustainable design addresses the growing concerns regarding computational resource efficiency, making it a pioneering solution for shielding digital health ecosystems from evolving cyber threats.