Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Materials Interfaces, 20(10), 2023

DOI: 10.1002/admi.202300064

Links

Tools

Export citation

Search in Google Scholar

Surface Passivation with Selected Phosphine Oxide Molecules for Efficient Pure‐Blue Mixed‐Halide Perovskite Quantum Dot Light‐Emitting Diodes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractPassivation of defects in halide perovskite using phosphine oxide or alkyl‐phosphonate has recently obtained a few remarkable achievements. However, effective application of phosphine oxide or alky‐phosphonate in passivating perovskite quantum dots (QDs) are seldom reported due to solubility issue or difficulty of amount control. In this work, two bifunctional organic molecules containing phosphine oxide groups, 2,4,6‐Tris[3‐(diphenylphosphinyl)phenyl]‐1,3,5‐triazine (PO‐T2T) and 2,7‐bis(diphenylphosphoryl)‐9,9′‐spirobifluorene (SPPO13), are deposited on QDs films by thermal evaporation. The molecules, both as passivation agents as well as electron transporting materials, exhibit stark contrast in passivating QDs and in light‐emitting diodes (LEDs) performance. A competition between charge transfer and defect passivation between the QDs and the molecules is proposed. In film, electron transfer from the QDs to PO‐T2T dominates and quench the QDs, while the passivation effect of PO‐T2T on the QDs dominates in driving device and enhances luminance of the LEDs. In contrast, passivation effect of SPPO13 on the QDs dominates both in films and in LEDs. A maximum EQE of 2.67% is obtained for the pure‐blue LED based on SPPO13‐passivated QDs films. This work provides a guide on the selection of passivation agents based on phosphine oxide and a promising passivation method for high‐efficient perovskite QD LEDs.