Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sustainability, 17(15), p. 12818, 2023

DOI: 10.3390/su151712818

Links

Tools

Export citation

Search in Google Scholar

The Impact of Vegetation Canopy on the Outdoor Thermal Environment in Cold Winter and Spring

Journal article published in 2023 by Hankai Chen, Rui Liu ORCID, Yu Zhang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The current study investigated the impact of vegetation canopy on the outdoor thermal environment in cold winter and spring, a less-explored aspect of its climate effects. Firstly, we conducted on-site observations of meteorology parameters on a campus in a hot summer and cold winter region. Then the ENVI-met microclimate simulation model was utilized to simulate the air temperature, relative humidity, wind speed and direction, and solar radiation of typical winter and spring days. Furthermore, the PET index was calculated to evaluate the thermal conditions. Our findings revealed that during the daytime, the vegetation canopy raised air temperature and relative humidity, reduced wind speed, and mitigated solar radiation. Solar radiation emerged as the primary factor affecting thermal comfort in the cold winter and spring. The presence of deciduous broad-leaved vegetation notably reduced cold discomfort and improved thermal comfort in the cold winter and spring. Finally, we propose replacing evergreen broad-leaved vegetation with deciduous broad-leaved vegetation in hot summer and cold winter regions to ensure year-round thermal comfort, especially in the cold winter and spring.