Dissemin is shutting down on January 1st, 2025

Published in

American Geophysical Union, Journal of Geophysical Research: Atmospheres, 10(129), 2024

DOI: 10.1029/2024jd041007

Links

Tools

Export citation

Search in Google Scholar

Impact of the Spatio‐Temporal Mismatch Between Satellite and In Situ Measurements on Validations of Surface Solar Radiation

Journal article published in 2024 by Ruben Urraca ORCID, Christian Lanconelli ORCID, Nadine Gobron ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractSatellite and in situ sensors do not observe exactly the same measurand. This introduces a mismatch between both types of measurements in the spatial or temporal. The mismatch differences can be the dominant component in their comparison, so they have to be removed for an adequate validation of satellite products. With this aim, we propose a methodology to characterize the mismatch between satellite and in situ measurements of surface solar radiation, evaluating the impact of the mismatch on validations. The Surface Solar Radiation Data Set—Heliosat (SARAH‐2) and the Baseline Surface Radiation Network are used to characterize the spatial and temporal mismatch, respectively. The mismatch differences in both domains are driven by cloud variability. At least 5 years are needed to characterize the mismatch, which is not constant throughout the year due to seasonal and diurnal cloud cover patterns. Increasing the mismatch can artificially improve the validation metrics under some circumstances, but the mismatch must be always minimized for a correct product assessment. Finally, we test two types of up‐scaling methods based on SARAH‐2 in the validation of degree‐scale products. The fully data‐driven correction removes all the mismatch effects (systematic and random) but fully propagates SARAH‐2 uncertainty to the corrections. The model‐based correction only removes the systematic mismatch difference, but it can correct measurements not covered by the high‐resolution data set and depends less SARAH‐2 uncertainty.