Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science Advances, 29(10), 2024

DOI: 10.1126/sciadv.adm8660

Links

Tools

Export citation

Search in Google Scholar

Targeting conserved TIM3 <sup>+</sup> VISTA <sup>+</sup> tumor-associated macrophages overcomes resistance to cancer immunotherapy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Despite the success of immunotherapy, overcoming immunoresistance in cancer remains challenging. We identified a unique niche of tumor-associated macrophages (TAMs), coexpressing T cell immunoglobulin and mucin domain–containing 3 (TIM3) and V-domain immunoglobulin suppressor of T cell activation (VISTA), that dominated human and mouse tumors resistant to most of the currently used immunotherapies. TIM3 + VISTA + TAMs were sustained by IL-4–enriching tumors with low (neo)antigenic and T cell–depleted features. TIM3 + VISTA + TAMs showed an anti-inflammatory and protumorigenic phenotype coupled with inability to sense type I interferon (IFN). This was established with cancer cells succumbing to immunogenic cell death (ICD). Dying cancer cells not only triggered autocrine type I IFNs but also exposed HMGB1/VISTA that engaged TIM3/VISTA on TAMs to suppress paracrine IFN-responses. Accordingly, TIM3/VISTA blockade synergized with paclitaxel, an ICD-inducing chemotherapy, to repolarize TIM3 + VISTA + TAMs to proinflammatory TAMs that killed cancer cells via tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) signaling. We propose targeting TIM3 + VISTA + TAMs to overcome immunoresistant tumors.