Dissemin is shutting down on January 1st, 2025

Published in

Association for Computing Machinery (ACM), ACM Transactions on Modeling and Computer Simulation, 2024

DOI: 10.1145/3673898

Links

Tools

Export citation

Search in Google Scholar

Adaptive Synchronization and Pacing Control for Visual Interactive Simulation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Parallel and distributed computing enable the execution of large and complex simulations. Yet, the usual separation of (headless) simulation execution and (subsequent, offline) output analysis often renders the simulation endeavor long and inefficient. Recently, Visual Interactive Simulation (VIS) tools and methods that address this end-to-end efficiency are gaining relevance, offering in-situ visualization, real-time debugging, and computational steering. Here, the typically distributed computing nature of the simulation execution poses synchronization challenges between the headless simulation engine and the user-facing frontend required for Visual Interactive Simulation. To the best of our knowledge, state-of-the-art synchronization approaches fall short due to their rigidity and inability to adapt to real-time user-centric changes. This paper introduces a novel adaptive algorithm to dynamically adjust the simulation’s pacing through a buffer-based framework, informed by predictive workload analysis. Our extensive experimental evaluation across diverse synthetic scenarios illustrates our method’s effectiveness in enhancing runtime efficiency and synchronicity, significantly reducing end-to-end time while minimizing user interaction delays, thereby addressing key limitations of existing synchronization strategies.