Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(15), 2024

DOI: 10.1038/s41467-024-45225-y

Links

Tools

Export citation

Search in Google Scholar

Optical Tellegen metamaterial with spontaneous magnetization

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe nonreciprocal magnetoelectric effect, also known as the Tellegen effect, promises a number of groundbreaking phenomena connected to fundamental (e.g., electrodynamics of axion and relativistic matter) and applied physics (e.g., magnetless isolators). We propose a three-dimensional metamaterial with an isotropic and resonant Tellegen response in the visible frequency range. The metamaterial is formed by randomly oriented bi-material nanocylinders in a host medium. Each nanocylinder consists of a ferromagnet in a single-domain magnetic state and a high-permittivity dielectric operating near the magnetic Mie-type resonance. The proposed metamaterial requires no external magnetic bias and operates on the spontaneous magnetization of the nanocylinders. By leveraging the emerging magnetic Weyl semimetals, we further show how a giant bulk effective magnetoelectric effect can be achieved in a proposed metamaterial, exceeding that of natural materials by almost four orders of magnitude.