Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Biostatistics, 2024

DOI: 10.1093/biostatistics/kxae017

Links

Tools

Export citation

Search in Google Scholar

DifferentialRegulation: a Bayesian hierarchical approach to identify differentially regulated genes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Summary Although transcriptomics data is typically used to analyze mature spliced mRNA, recent attention has focused on jointly investigating spliced and unspliced (or precursor-) mRNA, which can be used to study gene regulation and changes in gene expression production. Nonetheless, most methods for spliced/unspliced inference (such as RNA velocity tools) focus on individual samples, and rarely allow comparisons between groups of samples (e.g. healthy vs. diseased). Furthermore, this kind of inference is challenging, because spliced and unspliced mRNA abundance is characterized by a high degree of quantification uncertainty, due to the prevalence of multi-mapping reads, ie reads compatible with multiple transcripts (or genes), and/or with both their spliced and unspliced versions. Here, we present DifferentialRegulation, a Bayesian hierarchical method to discover changes between experimental conditions with respect to the relative abundance of unspliced mRNA (over the total mRNA). We model the quantification uncertainty via a latent variable approach, where reads are allocated to their gene/transcript of origin, and to the respective splice version. We designed several benchmarks where our approach shows good performance, in terms of sensitivity and error control, vs. state-of-the-art competitors. Importantly, our tool is flexible, and works with both bulk and single-cell RNA-sequencing data. DifferentialRegulation is distributed as a Bioconductor R package.