Published in

American Institute of Physics, The Journal of Chemical Physics, 11(159), 2023

DOI: 10.1063/5.0170325

Links

Tools

Export citation

Search in Google Scholar

On the electronic structure and spin–orbit coupling of BiB from photoelectron imaging of cryogenically-cooled BiB− anion

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We report a study on the electronic structure and chemical bonding of the BiB molecule using high-resolution photoelectron imaging of cryogenically cooled BiB− anion. By eliminating all the vibrational hot bands, we can resolve the complicated detachment transitions due to the open-shell nature of BiB and the strong spin–orbit coupling. The electron affinity of BiB is measured to be 2.010(1) eV. The ground state of BiB− is determined to be 2Π(3/2) with a σ2π3 valence electron configuration, while the ground state of BiB is found to be 3Σ−(0+) with a σ2π2 electron configuration. Eight low-lying spin–orbit excited states [3Σ−(1), 1Δ(2), 1Σ+(0+), 3Π(2), 3Π(1), 1Π(1)], including two forbidden transitions, [3Π(0−) and 3Π(0+)], are observed for BiB as a result of electron detachment from the σ and π orbitals of BiB−. The angular distribution information from the photoelectron imaging is found to be critical to distinguish detachment transitions from the σ or π orbital for the spectral assignment. This study provides a wealth of information about the low-lying electronic states and spin–orbit coupling of BiB, demonstrating the importance of cryogenic cooling for obtaining well-resolved photoelectron spectra for size-selected clusters produced from a laser vaporization cluster source.