Published in

Wiley, Small, 2024

DOI: 10.1002/smll.202310782

Links

Tools

Export citation

Search in Google Scholar

Strain Engineering: Perfecting Freestanding Perovskite Oxide Fabrication

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractFreestanding oxide membranes provide a promising path for integrating devices on silicon and flexible platforms. To ensure optimal device performance, these membranes must be of high crystal quality, stoichiometric, and their morphology free from cracks and wrinkles. Often, layers transferred on substrates show wrinkles and cracks due to a lattice relaxation from an epitaxial mismatch. Doping the sacrificial layer of Sr3Al2O6 (SAO) with Ca or Ba offers a promising solution to overcome these challenges, yet its effects remain critically underexplored. A systematic study of doping Ca into SAO is presented, optimizing the pulsed laser deposition (PLD) conditions, and adjusting the supporting polymer type and thickness, demonstrating that strain engineering can effectively eliminate these imperfections. Using SrTiO3 as a case study, it is found that Ca1.5Sr1.5Al2O6 offers a near‐perfect match and a defect‐free freestanding membrane. This approach, using the water‐soluble Bax/CaxSr3‐xAl2O6 family, paves the way for producing high‐quality, large freestanding membranes for functional oxide devices.