Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Communications Physics, 1(7), 2024

DOI: 10.1038/s42005-024-01631-8

Links

Tools

Export citation

Search in Google Scholar

Dual nature of magnetism driven by momentum dependent f-d Kondo hybridization

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe intricate nature of magnetism in uranium-based Kondo lattices is a consequence of correlations between U-5f and conduction electrons. Previously, the source of magnetism has been ascribed to either Mott physics or Ruderman-Kittel-Kasuya-Yosida interaction, both of which are not fully applicable to uranium-based Kondo lattices. Using linearized quasiparticle self-consistent GW plus dynamical mean-field theory, we demonstrate a crossover from incoherent to coherent f-d Kondo cloud in the paramagnetic phase of UTe2, USbTe and USbSe. As the transition occurs, we observe an augmented f-d coherence and Pauli-like magnetic susceptibility, with a substantial frozen magnetic moment of U-5f persisting. We show that momentum dependent f-d hybridization is responsible for the magnetic moments arising from the renormalized f electrons’ van Hove singularity. Our findings provide a perspective to explain the dual nature of magnetism and the long-range magnetic ordering induced by pressure in UTe2.