Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal Letters, 2(969), p. L26, 2024

DOI: 10.3847/2041-8213/ad5970

Links

Tools

Export citation

Search in Google Scholar

Class Symbolic Regression: Gotta Fit ’Em All

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We introduce “Class Symbolic Regression” (Class SR), the first framework for automatically finding a single analytical functional form that accurately fits multiple data sets—each realization being governed by its own (possibly) unique set of fitting parameters. This hierarchical framework leverages the common constraint that all the members of a single class of physical phenomena follow a common governing law. Our approach extends the capabilities of our earlier Physical Symbolic Optimization (Φ-SO) framework for symbolic regression, which integrates dimensional analysis constraints and deep reinforcement learning for unsupervised symbolic analytical function discovery from data. Additionally, we introduce the first Class SR benchmark, comprising a series of synthetic physical challenges specifically designed to evaluate such algorithms. We demonstrate the efficacy of our novel approach by applying it to these benchmark challenges and showcase its practical utility for astrophysics by successfully extracting an analytic galaxy potential from a set of simulated orbits approximating stellar streams.