Published in

Optica, Photonics Research, 5(12), p. 1078, 2024

DOI: 10.1364/prj.511916

Links

Tools

Export citation

Search in Google Scholar

Optical magnetic field enhancement using ultrafast azimuthally polarized laser beams and tailored metallic nanoantennas

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Structured light provides unique opportunities to spatially tailor the electromagnetic field of laser beams. These include the possibility of a sub-wavelength spatial separation of their electric and magnetic fields, which would allow isolating interactions of matter with pure magnetic (or electric) fields. This could be particularly interesting in molecular spectroscopy, as excitations due to electric and—usually very weak—magnetic transition dipole moments can be disentangled. In this work, we show that the use of tailored metallic nanoantennas drastically enhances the strength of the longitudinal magnetic field carried by an ultrafast azimuthally polarized beam (by a factor of ∼65), which is spatially separated from the electric field by the beam’s symmetry. Such enhancement is due to favorable phase-matching of the magnetic field induced by the electric current loops created in the antennas. Our particle-in-cell simulation results demonstrate that the interactions of moderately intense (∼1011 W/cm2) and ultrafast azimuthally polarized laser beams with conical, parabolic, Gaussian, or logarithmic metallic nanoantennas provide spatially isolated magnetic field pulses of several tens of Tesla.