Full text: Unavailable
AbstractThe meta‐stable active layer morphology of organic solar cells (OSCs) is identified as the main cause of the rapid burn‐in loss of power conversion efficiency (PCE) during long‐term device operation. However, effective strategies to eliminate the associated loss mechanisms from the initial stage of device operation are still lacking, especially for high‐efficiency material systems. Herein, the introduction of molecularly engineered dimer acceptors with adjustable thermal transition properties into the active layer of OSCs to serve as supramolecular stabilizers for regulating the thermal transitions and optimizing the crystallization of the absorber composites is reported. By establishing intimate π‐π interactions with small‐molecule acceptors, these stabilizers can effectively reduce the trap‐state density (Nt) in the devices to achieve excellent PCEs over 19%. More importantly, the low Nt associated with an initially optimized morphology can be maintained under external stresses to significantly reduce the PCE burn‐in loss in devices. This research reveals a judicious approach to improving OPV stability by establishing a comprehensive correlation between material properties, active‐layer morphology, and device performance, for developing burn‐in‐free OSCs.