Published in

MDPI, Polymers, 18(15), p. 3689, 2023

DOI: 10.3390/polym15183689

Links

Tools

Export citation

Search in Google Scholar

Morphological Evolution of Hybrid Block Copolymer Particles: Toward Magnetic Responsive Particles

Journal article published in 2023 by Jaeman J. Shin ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The co-assembly of block copolymers (BCPs) and inorganic nanoparticles (NPs) under emulsion confinement allows facile access to hybrid polymeric colloids with controlled hierarchical structures. Here, the effect of inorganic NPs on the structure of the hybrid BCP particles and the local distribution of NPs are studied, with a particular focus on comparing Au and Fe3O4 NPs. To focus on the effect of the NP core, Au and Fe3O4 NPs stabilized with oleyl ligands were synthesized, having a comparable diameter and grafting density. The confined co-assembly of symmetric polystyrene-b-poly(1,4-butadiene) (PS-b-PB) BCPs and NPs in evaporative emulsions resulted in particles with various morphologies including striped ellipsoids, onion-like particles, and their intermediates. The major difference in PS-b-PB/Au and PS-b-PB/Fe3O4 particles was found in the distribution of NPs inside the particles that affected the overall particle morphology. Au NPs were selectively localized inside PB domains with random distributions regardless of the particle morphology. Above the critical volume fraction, however, Au NPs induced the morphological transition of onion-like particles into ellipsoids by acting as an NP surfactant. For PS-b-PB/Fe3O4 ellipsoids, Fe3O4 NPs clustered and segregated to the particle/surrounding interface of the ellipsoids even at a low volume fraction, while Fe3O4 NPs were selectively localized in the middle of PB domains in a string-like pattern for PS-b-PB/Fe3O4 onion-like particles.