Dissemin is shutting down on January 1st, 2025

Published in

The Royal Society, Proceedings of the Royal Society B: Biological Sciences, 2002(290), 2023

DOI: 10.1098/rspb.2022.2570

Links

Tools

Export citation

Search in Google Scholar

Knowing the fishery to know the bycatch: bias-corrected estimates of harbour porpoise bycatch in gillnet fisheries

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Incidental captures (bycatch) remain a key global conservation threat for cetaceans. Bycatch of harbour porpoise Phocoena phocoena in set gillnets is routinely monitored in European Union fisheries, but generally relies on data collected at low spatio-temporal resolution or over short periods. In Denmark, a long-term monitoring programme started in 2010 using electronic monitoring to collect data on porpoise bycatch and gillnet fishing effort at a fine spatial and temporal scale, including time and position of each fishing operation, together with every associated bycatch event. We used these observations to model bycatch rates, given the operational and ecological characteristics of each haul observed in Danish waters. Data on fishing effort from the Danish and Swedish gillnet fleets were collected to predict fleet-wide porpoise bycatch in gillnets at regional level. Between 2010 and 2020, yearly total bycatch averaged 2088 animals (95% Cl: 667–6798). For the Western Baltic assessment unit, bycatch levels were above sustainability thresholds. These results demonstrate that fishing characteristics are key determinants of porpoise bycatch and that classical approaches ignoring these features would produce biased estimates. It emphasizes the need for efficient and informative monitoring methods to understand possible conservation impacts of marine mammal bycatch and to implement tailored mitigation techniques.