Published in

MDPI, International Journal of Environmental Research and Public Health, 8(20), p. 5482, 2023

DOI: 10.3390/ijerph20085482

Links

Tools

Export citation

Search in Google Scholar

Influence of Dose Conversions, Equilibrium Factors, and Unattached Fractions on Radon Risk Assessment in Operating and Show Underground Mines

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This paper compares the results of measurements taken in the underground workings of active and tourist mines. In these facilities, the aerosol size distributions of ambient aerosols at key workplaces and the distributions of radioactive aerosols containing radon decay products were determined. Based on these studies, dose conversions used for dose assessment and unattached fractions were determined. In addition, radon activity concentrations and potential alpha energy concentrations of short-lived progeny were also measured in the mines to determine the equilibrium factor. The dose conversions varied between 2–7 mSv/(mJ × h × m−3). The unattached fraction measured in active coal mines ranged from 0.01–0.23, in tourist mines from 0.09–0.44, and in the tourist cave it was 0.43. The results showed significant discrepancies between the effective doses determined from current recommendations and legal regulations and those determined from direct measurements of parameters affecting exposure.