Published in

Wiley Open Access, Advanced Science, 21(10), 2023

DOI: 10.1002/advs.202207314

Links

Tools

Export citation

Search in Google Scholar

Floating Carbon Nitride Composites for Practical Solar Reforming of Pre‐Treated Wastes to Hydrogen Gas

Journal article published in 2023 by Stuart Linley ORCID, Erwin Reisner ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSolar reforming (SR) is a promising green‐energy technology that can use sunlight to mitigate biomass and plastic waste while producing hydrogen gas at ambient pressure and temperature. However, practical challenges, including photocatalyst lifetime, recyclability, and low production rates in turbid waste suspensions, limit SR's industrial potential. By immobilizing SR catalyst materials (carbon nitride/platinum; CNx|Pt and carbon nitride/nickel phosphide; CNx|Ni2P) on hollow glass microspheres (HGM), which act as floating supports enabling practical composite recycling, such limitations can be overcome. Substrates derived from plastic and biomass, including poly(ethylene terephthalate) (PET) and cellulose, are reformed by floating SR composites, which are reused for up to ten consecutive cycles under realistic, vertical simulated solar irradiation (AM1.5G), reaching activities of 1333 ± 240 µmolH2 m−2 h−1 on pre‐treated PET. Floating SR composites are also advantageous in realistic waste where turbidity prevents light absorption by non‐floating catalyst powders, achieving 338.1 ± 1.1 µmolH2 m−2 h−1 using floating CNx versus non‐detectable H2 production with non‐floating CNx and a pre‐treated PET bottle as substrate. Low Pt loadings (0.033 ± 0.0013% m/m) demonstrate consistent performance and recyclability, allowing efficient use of precious metals for SR hydrogen production from waste substrates at large areal scale (217 cm2), taking an important step toward practical SR implementation.