Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Journal of Cardiovascular Development and Disease, 6(11), p. 178, 2024

DOI: 10.3390/jcdd11060178

Links

Tools

Export citation

Search in Google Scholar

Improved Interpretation of Pulmonary Artery Wedge Pressures through Left Atrial Volumetry—A Cardiac Magnetic Resonance Imaging Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: The pulmonary artery wedge pressure (PAWP) is regarded as a reliable indicator of left ventricular end-diastolic pressure (LVEDP), but this association is weaker in patients with left-sided heart disease (LHD). We compared morphological differences in cardiac magnetic resonance imaging (CMR) in patients with heart failure (HF) and a reduced left ventricular ejection fraction (LVEF), with or without elevation of PAWP or LVEDP. Methods: We retrospectively identified 121 patients with LVEF < 50% who had undergone right heart catheterization (RHC) and CMR. LVEDP data were available for 75 patients. Results: The mean age of the study sample was 63 ± 14 years, the mean LVEF was 32 ± 10%, and 72% were men. About 53% of the patients had an elevated PAWP (>15 mmHg). In multivariable logistic regression analysis, NT-proBNP, left atrial ejection fraction (LAEF), and LV end-systolic volume index independently predicted an elevated PAWP. Of the 75 patients with available LVEDP data, 79% had an elevated LVEDP, and 70% had concomitant PAWP elevation. By contrast, all but one patient with elevated PAWP and half of the patients with normal PAWP had concomitant LVEDP elevation. The Bland–Altman plot revealed a systematic bias of +5.0 mmHg between LVEDP and PAWP. Notably, LAEF was the only CMR variable that differed significantly between patients with elevated LVEDP and a PAWP ≤ or >15 mmHg. Conclusions: In patients with LVEF < 50%, a normal PAWP did not reliably exclude LHD, and an elevated LVEDP was more frequent than an elevated PAWP. LAEF was the most relevant determinant of an increased PAWP, suggesting that a preserved LAEF in LHD may protect against backward failure into the lungs and the subsequent increase in pulmonary pressure.