Published in

IOP Publishing, Environmental Research Letters, 4(19), p. 044034, 2024

DOI: 10.1088/1748-9326/ad2b2a

Links

Tools

Export citation

Search in Google Scholar

Synthetic aperture radar (SAR) detects large gas seeps in Alaska lakes

Journal article published in 2024 by Melanie Engram ORCID, Katey Walter Anthony ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Reservoirs of 14C-depleted methane (CH4), a potent greenhouse gas, residing beneath permafrost are vulnerable to escape where permafrost thaw creates open-talik conduits. However, little is known about the magnitude and variability of this methane source or its response to climate change. Remote-sensing detection of large gas seeps would be useful for establishing a baseline understanding of sub-permafrost methane seepage, as well as for monitoring these seeps over time. Here we explored synthetic aperture radar’s (SAR) response to large sub-permafrost gas seeps in an interior Alaskan lake. In SAR scenes from 1992 to 2011, we observed high perennial SAR L-band backscatter (σ 0) from a ∼90 m-wide feature in the winter ice of interior Alaska’s North Blair Lake (NBL). Spring and fall optical imagery showed holes in the ice at the same location as the SAR anomaly. Through field work we (1) confirmed gas bubbling at this location from a large pockmark in the lakebed, (2) measured flux at the location of densest bubbles (1713 ± 290 mg CH4 m−2 d−1), and (3) determined the bubbles’ methane mixing ratio (6.6%), radiocarbon age (18 470 ± 50 years BP), and δ13CCH4 values (−44.5 ± 0.1‰), which together may represent a mixture of sources and processes. We performed a first order comparison of SAR σ 0 from the NBL seep and other known sub-permafrost methane seeps with diverse ice/water interface shapes in order to evaluate the variability of SAR signals from a variety of seep types. Results from single-polarized intensity and polarimetric L-band SAR decompositions as well as dual-polarized C-band SAR are presented with the aim to find the optimal SAR imaging parameters to detect large methane seeps in frozen lakes. Our study indicates the potential for SAR remote sensing to be used to detect and monitor large, sub-permafrost gas seeps in Arctic and sub-Arctic lakes.