Full text: Download
Cannabinoids are proposed for alleviating neuropathic pain, but their use is limited by cannabimimetic side effects. The inhibition of the fatty acid amide hydrolase (FAAH), the degrading enzyme of the endocannabinoid anandamide, has received attention as an alternative to cannabinoids in the treatment of neuropathic pain. Here, we investigated the effect of URB937, a blood–brain barrier impermeant FAAH inhibitor, on experimentally induced mechanical allodynia in an animal model of trigeminal neuralgia. Male Sprague-Dawley rats were subjected to chronic constriction injury of the infraorbital nerve (IoN-CCI); operated animals were treated sub-chronically with URB937 (1 mg/kg, i.p.) or vehicle before or after trigeminal mechanical allodynia establishment. We also assayed mRNA expression levels of the pain neuropeptide calcitonin gene-related peptide (CGRP) and cytokines in the medulla, cervical spinal cord, and trigeminal ganglion ipsilateral to IoN-CCI using rt-PCR. URB937 treatment prevented the development of mechanical allodynia and IoN-CCI-induced changes in mRNA expression levels of CGRP and cytokines in the evaluated areas. When administered after allodynia development, URB937 prevented IoN-CCI-induced changes in CGRP and cytokine gene expression; this was not associated with a significant abrogation of the mechanical allodynia. These findings suggest that URB937 may counteract, but not reverse, the development of allodynia in trigeminal neuralgia. Further research is needed to elucidate the underlying mechanisms.