Published in

Springer Nature [academic journals on nature.com], Oncogene, 41(42), p. 3017-3034, 2023

DOI: 10.1038/s41388-023-02827-y

Links

Tools

Export citation

Search in Google Scholar

The role of non-coding RNAs in extracellular vesicles in breast cancer and their diagnostic implications

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractBreast Cancer (BC) is the most common form of cancer worldwide, responsible for 25% of cancers in women. Whilst treatment is effective and often curative in early BC, metastatic disease is incurable, highlighting the need for early detection. Currently, early detection relies on invasive procedures, however recent studies have shown extracellular vesicles (EVs) obtained from liquid biopsies may have clinical utility. EVs transport diverse bioactive cargos throughout the body, play major roles in intercellular communication and, importantly, mirror their cell of origin. In cancer cells, EVs alter the behaviour of the tumour microenvironment (TME), forming a bridge of communication between cancerous and non-cancerous cells to alter all aspects of cancer progression, including the formation of a pre-metastatic niche. Through gene regulatory frameworks, non-coding RNAs (ncRNAs) modulate vital molecular and cellular processes and can act as both tumour suppressors and oncogenic drivers in various cancer types. EVs transport and protect ncRNAs, facilitating their use clinically as liquid biopsies for early BC detection. This review summarises current research surrounding ncRNAs and EVs within BC, focusing on their roles in cancer progression through bi-directional communication with the microenvironment and their diagnostic implications.