Dissemin is shutting down on January 1st, 2025

Published in

Proceedings of the International AAAI Conference on Web and Social Media, (18), p. 1847-1858, 2024

DOI: 10.1609/icwsm.v18i1.31430

Links

Tools

Export citation

Search in Google Scholar

A Study of Partisan News Sharing in the Russian Invasion of Ukraine

Journal article published in 2024 by Yiming Zhu, Ehsan-Ul Haq, Gareth Tyson, Lik-Hang Lee ORCID, Yuyang Wang, Pan Hui
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Since the Russian invasion of Ukraine, a large volume of biased and partisan news has been spread via social media platforms. As this may lead to wider societal issues, we argue that understanding how partisan news sharing impacts users' communication is crucial for better governance of online communities. In this paper, we perform a measurement study of partisan news sharing. We aim to characterize the role of such sharing in influencing users' communications. Our analysis covers an eight-month dataset across six Reddit communities related to the Russian invasion. We first perform an analysis of the temporal evolution of partisan news sharing. We confirm that the invasion stimulates discussion in the observed communities, accompanied by an increased volume of partisan news sharing. Next, we characterize users' response to such sharing. We observe that partisan bias plays a role in narrowing its propagation. More biased media is less likely to be spread across multiple subreddits. However, we find that partisan news sharing attracts more users to engage in the discussion, by generating more comments. We then built a predictive model to identify users likely to spread partisan news. The prediction is challenging though, with 61.57% accuracy on average. Our centrality analysis on the commenting network further indicates that the users who disseminate partisan news possess lower network influence in comparison to those who propagate neutral news.