Published in

IOP Publishing, New Journal of Physics, 5(26), p. 055002, 2024

DOI: 10.1088/1367-2630/ad48ac

Links

Tools

Export citation

Search in Google Scholar

DarkGEO: a large-scale laser-interferometric axion detector

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Axions and axion-like particles (ALPs) are leading candidates for dark matter. They are well motivated in many extensions of the standard model and supported by astronomical observations. We propose an iterative transformation of the existing facilities of the gravitational-wave detector and technology testbed GEO600, located near Ruthe in Germany, into a kilometre-scale upgrade of the laser-interferometric axion detector LIDA. The final DarkGEO detector could search for coincident signatures of axions and ALPs and significantly surpass the current constraints of both direct searches and astrophysical observations in the measurement band from 10−16 to 10−8eV. We discuss design parameters and sensitivities for the configurations of the different iteration steps as well as technical challenges known from the first LIDA results. The proposed DarkGEO detector will be well suited to probe the mass-coupling parameter space associated with predictions from theoretical models, like grand-unified theories, as well as from astrophysical evidence, like the cosmic infrared background.