Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Data, 1(11), 2024

DOI: 10.1038/s41597-024-03573-w

Links

Tools

Export citation

Search in Google Scholar

Accelerating Formulation Design via Machine Learning: Generating a High-throughput Shampoo Formulations Dataset

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractLiquid formulations are ubiquitous yet have lengthy product development cycles owing to the complex physical interactions between ingredients making it difficult to tune formulations to customer-defined property targets. Interpolative ML models can accelerate liquid formulations design but are typically trained on limited sets of ingredients and without any structural information, which limits their out-of-training predictive capacity. To address this challenge, we selected eighteen formulation ingredients covering a diverse chemical space to prepare an open experimental dataset for training ML models for rinse-off formulations development. The resulting design space has an over 50-fold increase in dimensionality compared to our previous work. Here, we present a dataset of 812 formulations, including 294 stable samples, which cover the entire design space, with phase stability, turbidity, and high-fidelity rheology measurements generated on our semi-automated, ML-driven liquid formulations workflow. Our dataset has the unique attribute of sample-specific uncertainty measurements to train predictive surrogate models.