Published in

American Geophysical Union, Geophysical Research Letters, 2(51), 2024

DOI: 10.1029/2023gl103696

Links

Tools

Export citation

Search in Google Scholar

Permeability and Elastic Properties of Rocks From the Northern Hikurangi Margin: Implications for Slow‐Slip Events

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractFluid flow and pore‐pressure cycling are believed to control slow slip events (SSEs), such as those that frequently occur at the northern Hikurangi margin of New Zealand. To better understand fluid flow in the forearc system we examined the relationship between several physical properties of Cretaceous‐to‐Pliocene sedimentary rocks from the Raukumara peninsula. We found that the permeability of the deep wedge is too low to drain fluids, but fracturing increases permeability by orders of magnitude, making fracturing key for fluid flow. In weeks to months, plastic deformation, swelling, and possibly not‐yet‐identified mechanisms heal the fractures, restoring the initial permeability. We conclude that overpressures at the northern HM might partly dissipate during SSEs due to enhanced permeability near faults. However, in the months following an SSE, healing in the prism will lower permeability, forcing pore pressure to rise and a new SSE to occur.