Nature Research, Nature, 7963(618), p. 63-68, 2023
DOI: 10.1038/s41586-023-05952-6
Full text: Unavailable
AbstractTitanium alloys are advanced lightweight materials, indispensable for many critical applications1,2. The mainstay of the titanium industry is the α–β titanium alloys, which are formulated through alloying additions that stabilize the α and β phases3–5. Our work focuses on harnessing two of the most powerful stabilizing elements and strengtheners for α–β titanium alloys, oxygen and iron1–5, which are readily abundant. However, the embrittling effect of oxygen6,7, described colloquially as ‘the kryptonite to titanium’8, and the microsegregation of iron9 have hindered their combination for the development of strong and ductile α–β titanium–oxygen–iron alloys. Here we integrate alloy design with additive manufacturing (AM) process design to demonstrate a series of titanium–oxygen–iron compositions that exhibit outstanding tensile properties. We explain the atomic-scale origins of these properties using various characterization techniques. The abundance of oxygen and iron and the process simplicity for net-shape or near-net-shape manufacturing by AM make these α–β titanium–oxygen–iron alloys attractive for a diverse range of applications. Furthermore, they offer promise for industrial-scale use of off-grade sponge titanium or sponge titanium–oxygen–iron10,11, an industrial waste product at present. The economic and environmental potential to reduce the carbon footprint of the energy-intensive sponge titanium production12 is substantial.