Dissemin is shutting down on January 1st, 2025

Published in

JMIR Publications, Journal of Medical Internet Research, (26), p. e46758, 2024

DOI: 10.2196/46758

Links

Tools

Export citation

Search in Google Scholar

Chatbots That Deliver Contraceptive Support: Systematic Review

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background A chatbot is a computer program that is designed to simulate conversation with humans. Chatbots may offer rapid, responsive, and private contraceptive information; counseling; and linkages to products and services, which could improve contraceptive knowledge, attitudes, and behaviors. Objective This review aimed to systematically collate and interpret evidence to determine whether and how chatbots improve contraceptive knowledge, attitudes, and behaviors. Contraceptive knowledge, attitudes, and behaviors include access to contraceptive information, understanding of contraceptive information, access to contraceptive services, contraceptive uptake, contraceptive continuation, and contraceptive communication or negotiation skills. A secondary aim of the review is to identify and summarize best practice recommendations for chatbot development to improve contraceptive outcomes, including the cost-effectiveness of chatbots where evidence is available. Methods We systematically searched peer-reviewed and gray literature (2010-2022) for papers that evaluated chatbots offering contraceptive information and services. Sources were included if they featured a chatbot and addressed an element of contraception, for example, uptake of hormonal contraceptives. Literature was assessed for methodological quality using appropriate quality assessment tools. Data were extracted from the included sources using a data extraction framework. A narrative synthesis approach was used to collate qualitative evidence as quantitative evidence was too sparse for a quantitative synthesis to be carried out. Results We identified 15 sources, including 8 original research papers and 7 gray literature papers. These sources included 16 unique chatbots. This review found the following evidence on the impact and efficacy of chatbots: a large, robust randomized controlled trial suggests that chatbots have no effect on intention to use contraception; a small, uncontrolled cohort study suggests increased uptake of contraception among adolescent girls; and a development report, using poor-quality methods, suggests no impact on improved access to services. There is also poor-quality evidence to suggest increased contraceptive knowledge from interacting with chatbot content. User engagement was mixed, with some chatbots reaching wide audiences and others reaching very small audiences. User feedback suggests that chatbots may be experienced as acceptable, convenient, anonymous, and private, but also as incompetent, inconvenient, and unsympathetic. The best practice guidance on the development of chatbots to improve contraceptive knowledge, attitudes, and behaviors is consistent with that in the literature on chatbots in other health care fields. Conclusions We found limited and conflicting evidence on chatbots to improve contraceptive knowledge, attitudes, and behaviors. Further research that examines the impact of chatbot interventions in comparison with alternative technologies, acknowledges the varied and changing nature of chatbot interventions, and seeks to identify key features associated with improved contraceptive outcomes is needed. The limitations of this review include the limited evidence available on this topic, the lack of formal evaluation of chatbots in this field, and the lack of standardized definition of what a chatbot is.