Published in

American Astronomical Society, Astronomical Journal, 5(166), p. 206, 2023

DOI: 10.3847/1538-3881/acfda4

Links

Tools

Export citation

Search in Google Scholar

A Search for Technosignatures Around 11,680 Stars with the Green Bank Telescope at 1.15–1.73 GHz

Journal article published in 2023 by Jean-Luc Margot ORCID, Megan G. Li ORCID, Pavlo Pinchuk ORCID, Nathan Myhrvold ORCID, Larry Lesyna ORCID, Lea E. Alcantara, Megan T. Andrakin, Jeth Arunseangroj, Damien S. Baclet, Madison H. Belk, Zerxes R. Bhadha, Nicholas W. Brandis, Robert E. Carey, Harrison P. Cassar, Sai S. Chava and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We conducted a search for narrowband radio signals over four observing sessions in 2020–2023 with the L-band receiver (1.15–1.73 GHz) of the 100 m diameter Green Bank Telescope. We pointed the telescope in the directions of 62 TESS Objects of Interest, capturing radio emissions from a total of ∼11,680 stars and planetary systems in the ∼9′ beam of the telescope. All detections were either automatically rejected or visually inspected and confirmed to be of anthropogenic nature. We also quantified the end-to-end efficiency of radio SETI pipelines with a signal injection and recovery analysis. The UCLA SETI pipeline recovers 94.0% of the injected signals over the usable frequency range of the receiver and 98.7% of the injections when regions of dense radio frequency interference are excluded. In another pipeline that uses incoherent sums of 51 consecutive spectra, the recovery rate is ∼15 times smaller at ∼6%. The pipeline efficiency affects calculations of transmitter prevalence and SETI search volume. Accordingly, we developed an improved Drake figure of merit and a formalism to place upper limits on transmitter prevalence that take the pipeline efficiency and transmitter duty cycle into account. Based on our observations, we can state at the 95% confidence level that fewer than 6.6% of stars within 100 pc host a transmitter that is continuously transmitting a narrowband signal with an equivalent isotropic radiated power (EIRP) > 1013 W. For stars within 20,000 ly, the fraction of stars with detectable transmitters (EIRP > 5 × 1016 W) is at most 3 × 10−4. Finally, we showed that the UCLA SETI pipeline natively detects the signals detected with AI techniques by Ma et al.