Published in

IOP Publishing, Smart Materials and Structures, 2(33), p. 025018, 2024

DOI: 10.1088/1361-665x/ad1c53

Links

Tools

Export citation

Search in Google Scholar

A conical spiral piezoelectric energy harvester with parallel beams for all-directional flow energy harvesting

Journal article published in 2024 by Jiang Ding ORCID, Changyang Huang, Ziyang Zeng, Zihao Chen
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Piezoelectric energy harvesting technology using flow-induced vibration is a type of interference-resistant and miniaturizable power generation technology, which is promising on powering the wireless micro electromechanical system in flow filed. However, the flow direction of the natural flow field is changeable while most existing flow-induced piezoelectric energy harvesters (PEHs) are limited by their working direction. In this paper, we propose a conical spiral piezoelectric energy harvester with parallel beams (CSPEH-PB) that can collect energy under flow excitation in all directions. Based on the multi-dimensional vibration analysis of conical spiral structure, we investigate the resonance mode and effective flow velocity range of the CSPEH-PB through numerical analysis. In comparative experiments with a bimorph flat PEH, we verify the effective flow velocity range and voltage of the CSPEH-PB and polyvinylidene fluoride (PVDF) films attached. The results demonstrate that the CSPEH-PB generates an effective voltage greater than 0.53 V through the PVDF films under any direction of the water flow, and has a wider resonance bandwidth than PEH with straight beam. This study provides a practical solution for adapting PEHs to changeable flow direction.