Published in

MDPI, Materials, 4(17), p. 875, 2024

DOI: 10.3390/ma17040875

Links

Tools

Export citation

Search in Google Scholar

Investigating the Behavior of Thin-Film Formation over Time as a Function of Precursor Concentration and Gas Residence Time in Nitrogen Dielectric Barrier Discharge

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study aims to establish a correlation between the fragmentation process and the growth mechanisms of a coating deposited on a fluoropolymer. Deposition was carried out using dielectric barrier discharge at atmospheric pressure, employing an oxygen-containing organic precursor in a nitrogen environment. The findings reveal that the impact of precursor concentration on the formation of specific functionalities is more significant than the influence of treatment time. The X-ray photoelectron spectroscopy (XPS) results obtained indicate a reduction in the N/O ratio on the coating’s surface as the precursor concentration in the discharge increases. Fourier transform infrared spectroscopy (FTIR) analysis, conducted in the spectral range of 1500 cm−1 to 1800 cm−1, confirmed the connection between the chemical properties of plasma-deposited thin films and the concentration of organic precursors in the discharge. Furthermore, the emergence of nitrile moieties (C≡N) in the FTIR spectrum at 2160 cm−1 was noted under specific experimental conditions.