Published in

Medical Visualization, 1(28), p. 157-167, 2023

DOI: 10.24835/1607-0763-1359

Links

Tools

Export citation

Search in Google Scholar

Radiomics of fetal magnetic resonance imaging in congenital diaphragmatic hernia

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Objectives. Analysis of possibilities of radiomics as a source of additional diagnostic information about the structural maturity of the lungsMaterials and methods. A retrospective study included 72 pregnant women: 35 with congenital fetal diaphragmatic hernia (group 1) and 37 without fetal lung pathology (group 2). Frontal or co-frontal T2 images (T2 FSE) were obtained. Segmentation of regions of interest at the fetal lung level was performed manually with ITK-Snap. A total of 107 radiomic features were extracted using pyradiomics. The statistical analysis was performed using the STATISTICA 10 statistical analysis package (USA) to detect correlation between trait values and the target variable (presence of lung pathology in CDH), and to show differences in the comparison groups according to the detected parameters.Results. Statistically significant features were identified for 2D and 3D segmentations (p < 0.05). For 2D and 3D segmentations, the number of significant features was 14 and 73, respectively. After exclusion of features with cross-correlations, their number decreased to 6 and 8 for single slices and 3D images, respectively. Correlation coefficients between the features and the presence of lung pathology were also calculated. In the case of 3D images, the number of features with significant correlation coefficients (r > 0.4, p < 0.05) equaled 20, while for single-slice images this number was 3.Conclusion. The data obtained allow to conclude that it is reasonable to use texture analysis of the 3D MRI images as a source of additional diagnostic information concerning the structural maturity of the lungs.