Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Electronic Materials, 4(10), 2024

DOI: 10.1002/aelm.202300579

Links

Tools

Export citation

Search in Google Scholar

Tailoring Magnetic Anisotropy in Ultrathin Cobalt by Surface Carbon Chemistry

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe ability to manipulate magnetic anisotropy is essential for magnetic sensing and storage tools. Surface carbon species offer cost‐effective alternatives to metal‐oxide and noble metal capping layers, inducing perpendicular magnetic anisotropy in ultrathin ferromagnetic films. Here, the different mechanisms by which the magnetism in a few‐layer‐thick Co thin film is modified upon adsorption of carbon monoxide (CO), dispersed carbon, and graphene are elucidated. Using X‐ray microscopy with chemical and magnetic sensitivity, the in‐plane to out‐of‐plane spin reorientation transition in cobalt is monitored during the accumulation of surface carbon up to the formation of graphene. Complementary magneto‐optical measurements show weak perpendicular magnetic anisotropy (PMA) at room temperature for dispersed carbon on Co, while graphene‐covered cobalt exhibits a significant out‐of‐plane coercive field. Density‐functional theory (DFT) calculations show that going from CO/Co to C/Co and to graphene/Co, the magnetocrystalline and magnetostatic anisotropies combined promote out‐of‐plane magnetization. Anisotropy energies weakly depend on carbidic species coverage. Instead, the evolution of the carbon chemical state from carbidic to graphitic is accompanied by an exponential increase in the characteristic domain size, controlled by the magnetic anisotropy energy. Beyond providing a basic understanding of the carbon‐ferromagnet interfaces, this study presents a sustainable approach to tailor magnetic anisotropy in ultrathin ferromagnetic films.