Published in

American Institute of Physics, The Journal of Chemical Physics, 12(159), 2023

DOI: 10.1063/5.0159888

Links

Tools

Export citation

Search in Google Scholar

Ab initio study of electronic states and radiative properties of the AcF molecule

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Relativistic coupled-cluster calculations of the ionization potential, dissociation energy, and excited electronic states under 35 000 cm−1 are presented for the actinium monofluoride (AcF) molecule. The ionization potential is calculated to be IPe = 48 866 cm−1, and the ground state is confirmed to be a closed-shell singlet and thus strongly sensitive to the T,P-violating nuclear Schiff moment of the Ac nucleus. Radiative properties and transition dipole moments from the ground state are identified for several excited states, achieving a mean uncertainty estimate of ∼450 cm−1 for the excitation energies. For higher-lying states that are not directly accessible from the ground state, possible two-step excitation pathways are proposed. The calculated branching ratios and Franck–Condon factors are used to investigate the suitability of AcF for direct laser cooling. The lifetime of the metastable (1)3Δ1 state, which can be used in experimental searches of the electric dipole moment of the electron, is estimated to be of order 1 ms.