Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Applied Physics Letters, 2(123), 2023

DOI: 10.1063/5.0155295

Links

Tools

Export citation

Search in Google Scholar

Large ordered moment with strong easy-plane anisotropy and vortex-domain pattern in the kagome ferromagnet Fe3Sn

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We report the magnetic anisotropy of kagome bilayer ferromagnet Fe3Sn probed by the bulk magnetometry and magnetic force microscopy (MFM) on high-quality single crystals. The dependence of magnetization on the orientation of the external magnetic field reveals strong easy-plane magnetocrystalline anisotropy and anisotropy of the saturation magnetization. The leading magnetocrystalline anisotropy constant shows a monotonous increase from K1≈−1.0×106 J/m3 at 300 K to −1.3×106 J/m3 at 2 K. Our ab initio electronic structure calculations yield the value of total magnetic moment of 7.1 μB/f.u. and a magnetocrystalline anisotropy energy density of −0.57 meV/f.u. (−1.62×106J/m3) both being in reasonable agreement with the experimental values. The MFM imaging reveals micrometer-scale magnetic vortices with weakly pinned cores that vanish at the saturation field of ∼3 T applied perpendicular to the kagome plane. The observed vortex-domain structure is well reproduced by the micromagnetic simulations, using the experimentally determined value of the anisotropy and exchange stiffness.