Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(15), 2024

DOI: 10.1038/s41467-024-45696-z

Links

Tools

Export citation

Search in Google Scholar

Rejuvenation as the origin of planar defects in the CrCoNi medium entropy alloy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHigh or medium- entropy alloys (HEAs/MEAs) are multi-principal element alloys with equal atomic elemental composition, some of which have shown record-breaking mechanical performance. However, the link between short-range order (SRO) and the exceptional mechanical properties of these alloys has remained elusive. The local destruction of SRO by dislocation glide has been predicted to lead to a rejuvenated state with increased entropy and free energy, creating softer zones within the matrix and planar fault boundaries that enhance the ductility, but this has not been verified. Here, we integrate in situ nanomechanical testing with energy-filtered four-dimensional scanning transmission electron microscopy (4D-STEM) and directly observe the rejuvenation during cyclic mechanical loading in single crystal CrCoNi at room temperature. Surprisingly, stacking faults (SFs) and twin boundaries (TBs) are reversible in initial cycles but become irreversible after a thousand cycles, indicating SF energy reduction and rejuvenation. Molecular dynamics (MD) simulation further reveals that the local breakdown of SRO in the MEA triggers these SF reversibility changes. As a result, the deformation features in HEAs/MEAs remain planar and highly localized to the rejuvenated planes, leading to the superior damage tolerance characteristic in this class of alloys.