Published in

American Geophysical Union, Earth and Space Science, 3(11), 2024

DOI: 10.1029/2023ea003326

Links

Tools

Export citation

Search in Google Scholar

Drought‐Induced Vertical Displacements and Water Loss in the Po River Basin (Northern Italy) From GNSS Measurements

Journal article published in 2024 by Francesco Pintori ORCID, Enrico Serpelloni ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractWe study vertical ground displacement time series from Global Navigation Satellite System (GNSS) stations to measure deformation associated with hydrological drought in the Po river basin. Focusing on interannual trend changes, rather than seasonal (annual) components, we found a clear spatially correlated deformation signal that is temporally (anti)correlated with changes in the Po river level and the SPEI‐12 drought index, with stations moving upward during periods of river/index level decrease and vice versa. In the 2021–2022 time span, which culminated in the most severe drought of the last two centuries, we estimate the amount and spatial distribution of water loss in the basin and its surroundings. Excluding the seasonal signals, between January 2021 and August 2022, the GNSS stations underwent uplift, up to 7 mm, which corresponds to ∼70 Gtons of water loss. Compared to Global Land Data Assimilation System and Gravity Recovery and Climate Experiment estimates, GNSS results show a similar temporal evolution of water content but a more heterogeneous distribution of values. We show that continuous GNSS networks provide an effective way to monitor multiannual trend changes in water storage even in small water basins and serve as a reliable indicator of drought severity.