Published in

Discover Nano, 1(18), 2023

DOI: 10.1186/s11671-023-03865-x

Links

Tools

Export citation

Search in Google Scholar

Performance assessment of a triple-junction solar cell with 1.0 eV GaAsBi absorber

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

AbstractGroup III–V semiconductor multi-junction solar cells are widely used in concentrated-sun and space photovoltaic applications due to their unsurpassed power conversion efficiency and radiation hardness. To further increase the efficiency, new device architectures rely on better bandgap combinations over the mature GaInP/InGaAs/Ge technology, with Ge preferably replaced by a 1.0 eV subcell. Herein, we present a thin-film triple-junction solar cell AlGaAs/GaAs/GaAsBi with 1.0 eV dilute bismide. A compositionally step-graded InGaAs buffer layer is used to integrate high crystalline quality GaAsBi absorber. The solar cells, grown by molecular-beam epitaxy, achieve 19.1% efficiency at AM1.5G spectrum, 2.51 V open-circuit voltage, and 9.86 mA/cm2 short-circuit current density. Device analysis identifies several routes to significantly improve the performance of the GaAsBi subcell and of the overall solar cell. This study is the first to report on multi-junctions incorporating GaAsBi and is an addition to the research on the use of bismuth-containing III–V alloys in photonic device applications.