Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, communications materials, 1(5), 2024

DOI: 10.1038/s43246-024-00497-1

Links

Tools

Export citation

Search in Google Scholar

Nanoscale spin ordering and spin screening effects in tunnel ferromagnetic Josephson junctions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMagnetic Josephson junctions (MJJs) have emerged as a prominent playground to explore the interplay between superconductivity and ferromagnetism. A series of fascinating experiments have revealed striking phenomena at the superconductor/ferromagnet (S/F) interface, pointing to tunable phase transitions and to the generation of unconventional spin-triplet correlations. Here, we show that the Josephson effect, being sensitive to phase space variation on the nanoscale, allows a direct observation of the spin polarization of the S/F interface. By measuring the temperature dependence of the Josephson magnetic field patterns of tunnel MJJs with strong and thin F-layer, we demonstrate an induced nanoscale spin order in S along the superconducting coherence length at S/F interface, i.e., the inverse proximity effect, with the first evidence of full spin screening at very low temperatures, as expected by the theory. A comprehensive phase diagram for spin nanoscale ordering regimes at S/F interfaces in MJJs has been derived in terms of the magnetic moment induced in the S-layer. Our findings contribute to drive the design and the tailoring of S/F interfaces also in view of potential applications in quantum computing.