Published in

Wiley, Advanced Functional Materials, 2024

DOI: 10.1002/adfm.202400396

Links

Tools

Export citation

Search in Google Scholar

Elephant Trunk Inspired Multimodal Deformations and Movements of Soft Robotic Arms

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractElephant trunks are capable of complex, multimodal deformations, allowing them to perform task‐oriented high‐degree‐of‐freedom (DOF) movements pertinent to the field of soft actuators. Despite recent advances, most soft actuators can only achieve one or two deformation modes, limiting their motion range and applications. Inspired by the elephant trunk musculature, a liquid crystal elastomer (LCE)‐based multi‐fiber design strategy is proposed for soft robotic arms in which a discrete number of artificial muscle fibers can be selectively actuated, achieving multimodal deformations and transitions between modes for continuous movements. Through experiments, finite element analysis (FEA), and a theoretical model, the influence of LCE fiber design on the achievable deformations, movements, and reachability of trunk‐inspired robotic arms is studied. Fiber geometry is parametrically investigated for 2‐fiber robotic arms and the tilting and bending of these arms is characterized. A 3‐fiber robotic arm is additionally studied with a simplified fiber arrangement analogous to that of an actual elephant trunk. The remarkably broad range of deformations and the reachability of the arm are discussed, alongside transitions between deformation modes for functional movements. It is anticipated that this design and actuation strategy will serve as a robust method to realize high‐DOF soft actuators for various engineering applications.