Published in

MDPI, Molecules, 4(29), p. 792, 2024

DOI: 10.3390/molecules29040792

Links

Tools

Export citation

Search in Google Scholar

Metal Complexes Containing Homoleptic Diorganoselenium(II) Ligands: Synthesis, Characterization and Investigation of Optical Properties

Journal article published in 2024 by Darius Dumitraș ORCID, Emese Gal ORCID, Cristian Silvestru ORCID, Alexandra Pop ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

[(Z)-2′-{2-C6H5-(4H)-oxazol-5-one}CHC6H4]2Se (5, L1) and [(Z)-4′-{2-C6H5-(4H)-oxazol-5-one}CHC6H4]2Se (6, L2) were prepared, structurally characterized and used as ligands to obtain new metal complexes of types [MX(Ln)] [L1: M = Ag, X = OTf (7); M = Au, X = Cl (13); L2: M = Ag, X = OTf (8); M = Au, X = Cl (14)], [(MX)2(Ln)] [M = Ag, X = OTf, L1 (9); L2 (10)], [ZnCl2(Ln)] [L1 (15); L2 (16)] and [Ag(Ln)][PF6] [L1 (11); L2 (12)]. The silver complexes 7 and 8 were ionic species (1:1 electrolytes) in a MeCN solution, while in the solid state, the triflate fragments were bonded to the silver cations. Similarly, the 2:1 complexes 9 and 10 were found to behave as 1:2 electrolytes in a MeCN solution, but single-crystal X-ray diffraction demonstrated that compound 9 showed the formation of a dimer in the solid state: a tetranuclear [Ag(OTf)]4 built through bridging triflate ligands was coordinated by two bridging organoselenium ligands through the nitrogen from the oxazolone ring and the selenium atoms in a 1κN:2κSe fashion. Supramolecular architectures supported by intermolecular C−H∙∙∙π, C−H∙∙∙O, Cl∙∙∙H and F∙∙∙H interactions were observed in compounds 4, 5 and 9. The compounds exhibited similar photophysical properties, with a bathochromic shift in the UV-Vis spectra caused by the position of the oxazolone ring on the phenyl ring attached to the selenium atoms.