Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Biology, 8(12), p. 1093, 2023

DOI: 10.3390/biology12081093

Links

Tools

Export citation

Search in Google Scholar

Combined Use of a Bacterial Consortium and Early-Colonizing Plants as a Treatment for Soil Recovery after Fire: A Model Based on Los Guájares (Granada, Spain) Wildfire

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

During 2022, intense heat waves, together with particularly extreme dry conditions, created a propitious scenario for wildfires, resulting in the area of vegetation consumed in Europe doubling. Mediterranean countries have been particularly affected, reaching 293,155 hectares in Spain, the worst data in the last 15 years. The effects on the vegetation and the soil are devastating, so knowing the recovery factors is essential for after-fire management. Resilient microorganisms play a fundamental role in rapid nutrient recycling, soil structure, and plant colonization in fire-affected soils. In this present work, we have studied emergent microbial communities in the case of the Los Guájares (Granada, Spain) fire, one of the most extensive of the year, to evaluate their role in the recovery of soil and vegetation cover. We aim to discern which are the main actors in order to formulate a new treatment that helps in the ecosystem recovery. Thus, we have found the relevant loss in phosphorous and potassium solubilizers, as well as siderophores or biofilm producers. Here, we decided to use the strains Pseudomonas koreensis AC, Peribacillus frigoritolerans CB, Pseudomonas fluorescens DC, Paenibacillus lautus C, Bacillus toyonensis CD, and Paenarthrobacter nitroguajacolicus AI as a consortium, as they showed most of the capacities required in a regenerative treatment. On the other hand, the microcosm test showed an enhanced pattern of germination of the emerging model plant, Bituminaria bituminosa, as well as a more aggregated structure for soil. This new approach can create a relevant approach in order to recover fire-affected soils in the future.