Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 31(103), p. 11760-11765, 2006

DOI: 10.1073/pnas.0603179103

Links

Tools

Export citation

Search in Google Scholar

Characterization of mycobacterial virulence genes through genetic interaction mapping

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have previously shown that approximately 5% of the genes encoded by the genome of Mycobacterium tuberculosis are specifically required for the growth or survival of this bacterium during infection. This corresponds to hundreds of genes, most of which have no identifiable function. As a unique approach to characterize these genes, we developed a method to rapidly delineate functional pathways by identifying mutations that modify each other's phenotype, i.e., "genetic interactions". Using this method, we have defined a complex set of interactions between virulence genes in this pathogen, and find that the products of unlinked genes associate to form multisubunit transporters that are required for bacterial survival in the host. These findings implicate a previously undescribed family of transport systems in the pathogenesis of tuberculosis, and identify genes that are likely to function in the metabolism of their substrates. This method can be readily applied to other organisms at either the single pathway level, as described here, or at the system level to define quantitative genetic interaction networks.