American Institute of Physics, Journal of Vacuum Science and Technology A, 2(42), 2024
DOI: 10.1116/6.0003225
Full text: Unavailable
Growth on nonpolar group III-nitride semiconductor surfaces has been suggested to be a remedy for avoiding detrimental polarization effects. However, the presence of intrinsic surface states within the fundamental bandgap at nonpolar surfaces leads to a Fermi-level pinning during growth, affecting the incorporation of dopants and impurities. This is further complicated by the use of ternary, e.g., AlxGa1−xN layers in device structures. In order to quantify the Fermi-level pinning on ternary group III nitride nonpolar growth surface, the energy position of the group III-derived empty dangling bond surface state at nonpolar AlxGa1−xN(101¯0) surfaces is determined as a function of the Al concentration using cross-sectional scanning tunneling microscopy and spectroscopy. The measurements show that the minimum energy of the empty dangling bond state shifts linearly toward midgap for increasing Al concentration with a slope of ≈5 meV/%. These experimental findings are supported by complementary density functional theory calculations.