Published in

Wiley, Advanced Materials, 32(35), 2023

DOI: 10.1002/adma.202302861

Links

Tools

Export citation

Search in Google Scholar

Understanding the Role of Removable Solid Additives: Selective Interaction Contributes to Vertical Component Distributions

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractSequentially deposited organic solar cells (SD‐OSCs) have attracted great attention owing to their ability in achieving a more favorable, vertically phase‐separated morphology to avoid the accumulation of counter charges at absorber/transporting layer interfaces. However, the processing of SD‐OSCs is still quite challenging in preventing the penetration of small‐molecule acceptors into the polymer donor layer via erosion or swelling. Herein, solid additives (SAs) with varied electrostatic potential distributions and steric hinderance are introduced into SD‐OSCs to investigate the effect of evaporation dynamics and selective interaction on vertical component distribution. Multiple modelings indicate that theπ–πinteraction dominates the interactions between aromatic SAs and active layer components. Among them,p‐dibromobenzene shows a stronger interaction with the donor while 2‐chloronaphthalene (2‐CN) interacts more preferably with acceptor. Combining the depth‐dependent morphological study aided by multiple X‐ray scattering methods, it is concluded that the evaporation of SAs can drive the stronger‐interaction component upward to the surface, while having minor impact on the overall molecular packing. Ultimately, the 2‐CN‐treated devices with reduced acceptor concentration at the bottom surface deliver a high power conversion efficiency of 19.2%, demonstrating the effectiveness of applying selective interactions to improve the vertical morphology of OSCs by using SAs with proper structure.