Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Cancers, 5(16), p. 865, 2024

DOI: 10.3390/cancers16050865

Links

Tools

Export citation

Search in Google Scholar

Maintain Efficacy and Spare Toxicity: Traditional and New Radiation-Based Conditioning Regimens in Hematopoietic Stem Cell Transplantation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Novelty in total body irradiation (TBI) as part of pre-transplant conditioning regimens lacked until recently, despite the developments in the field of allogeneic stem cell transplants. Long-term toxicities have been one of the major concerns associated with TBI in this setting, although the impact of TBI is not so easy to discriminate from that of chemotherapy, especially in the adult population. More recently, lower-intensity TBI and different approaches to irradiation (namely, total marrow irradiation, TMI, and total marrow and lymphoid irradiation, TMLI) were implemented to keep the benefits of irradiation and limit potential harm. TMI/TMLI is an alternative to TBI that delivers more selective irradiation, with healthy tissues being better spared and the control of the radiation dose delivery. In this review, we discussed the potential radiation-associated long-term toxicities and their management, summarized the evidence regarding the current indications of traditional TBI, and focused on the technological advances in radiotherapy that have resulted in the development of TMLI. Finally, considering the most recent published trials, we postulate how the role of radiotherapy in the setting of allografting might change in the future.