Published in

Wiley, Advanced Functional Materials, 49(33), 2023

DOI: 10.1002/adfm.202305835

Links

Tools

Export citation

Search in Google Scholar

High Thermopower of Agarose‐Based Ionic Thermoelectric Gel Through Micellization Effect Decoupling the Cation/Anion Thermodiffusion

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractIonic thermoelectric (i‐TE) gels can have a high thermopower, if the thermodiffusion of mobile cation/anion is decoupled, attracting increasing attentions. Herein, it is shown a high p‐type i‐TE thermopower of 41.8 mV K−1 in agarose‐based ionic thermoelectric gels of AG‐x Na:DBS (AG: agarose, Na:DBS: sodium dodecyl benzene sulfonate). The exclusively high thermopower is relative to the successfully decoupling the thermodiffusion of cation Na+ and anion DBS. A unique porous structure is formed due to the micellization of the amphiphilic DBS with the hydrophilic benzenesulfonic group attached to the hydrous agarose gel chains, while the hydrophobic alkyl chain point to the pore centers. As a result, the DBS micelles are almost immobile as compared with Na+, which can be reconsidered as a part of the gel matrix. The work shines a light on decoupling of cation/anion thermodiffusion through tailoring the microstructure of the quasi‐solid i‐TE materials.