Published in

Wiley, Angewandte Chemie International Edition, 14(63), 2024

DOI: 10.1002/anie.202318387

Links

Tools

Export citation

Search in Google Scholar

Electrochemical Doping and Structural Modulation of Conductive Metal‐Organic Frameworks

Journal article published in 2024 by Shengyang Zhou ORCID, Tianqi Liu, Maria Strømme ORCID, Chao Xu ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractIn this study, we introduce an electrochemical doping strategy aimed at manipulating the structure and composition of electrically conductive metal‐organic frameworks (c‐MOFs). Our methodology is exemplified through a representative c‐MOF, Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11‐hexaiminotriphenylene), synthesized into porous thin films supported by nanocellulose. While the c‐MOF exhibits characteristic capacitive behavior in neutral electrolyte; it manifests redox behaviors in both acidic and alkaline electrolytes. Evidence indicates that the organic ligands within c‐MOF undergo oxidation (p‐doping) and reduction (n‐doping) when exposed to specific electrochemical potentials in acidic and alkaline electrolyte, respectively. Interestingly, the p‐doping process proves reversible, with the c‐MOF structure remaining stable across cyclic p‐doping/de‐doping. In contrast, the n‐doping is irreversible, leading to the gradual decomposition of the framework into inorganic species over a few cycles. Drawing on these findings, we showcase the versatile electrochemical applications of c‐MOFs and their derived composites, encompassing electrochemical energy storage, electrocatalysis, and ultrafast actuation. This study provides profound insights into the doping of c‐MOFs, offering a new avenue for modulating their chemical and electronic structure, thereby broadening their potential for diverse electrochemical applications.